Source code for jwst.pipeline.calwebb_spec2

import traceback
from collections import defaultdict
from pathlib import Path

import numpy as np
from stdatamodels.jwst import datamodels

# step imports
from jwst.assign_wcs import assign_wcs_step
from jwst.assign_wcs.util import NoDataOnDetectorError
from jwst.background import background_step
from jwst.badpix_selfcal import badpix_selfcal_step
from jwst.barshadow import barshadow_step
from jwst.cube_build import cube_build_step
from jwst.extract_1d import extract_1d_step
from jwst.extract_2d import extract_2d_step
from jwst.flatfield import flat_field_step
from jwst.fringe import fringe_step
from jwst.imprint import imprint_step
from jwst.lib.exposure_types import is_nrs_ifu_flatlamp, is_nrs_ifu_linelamp, is_nrs_slit_linelamp
from jwst.master_background import master_background_mos_step
from jwst.msaflagopen import msaflagopen_step
from jwst.nsclean import nsclean_step
from jwst.pathloss import pathloss_step
from jwst.photom import photom_step
from jwst.pixel_replace import pixel_replace_step
from jwst.resample import resample_spec_step
from jwst.residual_fringe import residual_fringe_step
from jwst.srctype import srctype_step
from jwst.stpipe import Pipeline, query_step_status
from jwst.straylight import straylight_step
from jwst.wavecorr import wavecorr_step
from jwst.wfss_contam import wfss_contam_step

__all__ = ["Spec2Pipeline"]

# Classify various exposure types.
NRS_SLIT_TYPES = [
    "NRS_FIXEDSLIT",
    "NRS_BRIGHTOBJ",
    "NRS_MSASPEC",
    "NRS_LAMP",
    "NRS_AUTOWAVE",
    "NRS_AUTOFLAT",
]
WFSS_TYPES = ["NIS_WFSS", "NRC_GRISM", "NRC_WFSS"]
GRISM_TYPES = ["NRC_TSGRISM"] + WFSS_TYPES
EXP_TYPES_USING_REFBKGDS = WFSS_TYPES + ["NIS_SOSS"]


[docs] class Spec2Pipeline(Pipeline): """ Process JWST spectroscopic exposures from Level 2a to 2b. Included steps are: assign_wcs, badpix_selfcal, msa_flagging, nsclean, bkg_subtract, imprint_subtract, extract_2d, master_background_mos, wavecorr, flat_field, srctype, straylight, fringe, residual_fringe, pathloss, barshadow, wfss_contam, photom, pixel_replace, resample_spec, cube_build, and extract_1d. """ class_alias = "calwebb_spec2" spec = """ save_bsub = boolean(default=False) # Save background-subtracted science fail_on_exception = boolean(default=True) # Fail if any product fails. save_wfss_esec = boolean(default=False) # Save WFSS e-/sec image """ # noqa: E501 # Define aliases to steps step_defs = { "assign_wcs": assign_wcs_step.AssignWcsStep, "badpix_selfcal": badpix_selfcal_step.BadpixSelfcalStep, "msa_flagging": msaflagopen_step.MSAFlagOpenStep, "nsclean": nsclean_step.NSCleanStep, "bkg_subtract": background_step.BackgroundStep, "imprint_subtract": imprint_step.ImprintStep, "extract_2d": extract_2d_step.Extract2dStep, "master_background_mos": master_background_mos_step.MasterBackgroundMosStep, "wavecorr": wavecorr_step.WavecorrStep, "flat_field": flat_field_step.FlatFieldStep, "srctype": srctype_step.SourceTypeStep, "straylight": straylight_step.StraylightStep, "fringe": fringe_step.FringeStep, "residual_fringe": residual_fringe_step.ResidualFringeStep, "pathloss": pathloss_step.PathLossStep, "barshadow": barshadow_step.BarShadowStep, "wfss_contam": wfss_contam_step.WfssContamStep, "photom": photom_step.PhotomStep, "pixel_replace": pixel_replace_step.PixelReplaceStep, "resample_spec": resample_spec_step.ResampleSpecStep, "cube_build": cube_build_step.CubeBuildStep, "extract_1d": extract_1d_step.Extract1dStep, } # Main processing
[docs] def process(self, data): """ Run the Spec2Pipeline on the input data. Parameters ---------- data : str, Level2 Association, or `~jwst.datamodels.JwstDataModel` The exposure or association of exposures to process Returns ------- list[JWSTDataModel] The calibrated data models. """ self.log.info("Starting calwebb_spec2 ...") # Setup step parameters required by the pipeline. self.resample_spec.save_results = self.save_results self.resample_spec.suffix = "s2d" self.cube_build.output_type = "multi" self.cube_build.save_results = False self.cube_build.skip_dqflagging = True self.extract_1d.save_results = self.save_results # Retrieve the input(s) asn = self.load_as_level2_asn(data) if len(asn["products"]) > 1 and self.output_file is not None: self.log.warning( "Multiple products in input association. Output file name will be ignored." ) self.output_file = None # Each exposure is a product in the association. # Process each exposure. Delay reporting failures until the end. results = [] failures = [] for product in asn["products"]: self.log.info("Processing product {}".format(product["name"])) if self.output_file is None: self.output_file = product["name"] if not hasattr(asn, "filename"): asn.filename = "singleton" try: result = self.process_exposure_product( product, asn["asn_pool"], asn.filename, ) except NoDataOnDetectorError: # This error merits a special return # status if run from the command line. # Bump it up now. raise except Exception: traceback.print_exc() failures.append(traceback.format_exc()) else: if result is not None: results.append(result) self.output_file = None # handles multiple products in the association if len(failures) > 0 and self.fail_on_exception: raise RuntimeError("\n".join(failures)) # We're done self.log.info("Ending calwebb_spec2") self.output_use_model = True self.suffix = False return results
# Process each exposure
[docs] def process_exposure_product( self, exp_product, pool_name=" ", asn_file=" ", ): """ Calibrate an exposure found in the association product. Parameters ---------- exp_product : dict A Level2b association product. pool_name : str The pool name of the input association. asn_file : str The input association filename. Returns ------- JWSTDataModel The final calibrated product. """ # Find all the member types in the product members_by_type = defaultdict(list) for member in exp_product["members"]: members_by_type[member["exptype"].lower()].append(member["expname"]) # Get the science member. Technically there should only be # one. We'll just get the first one found. science_member = members_by_type["science"] if len(science_member) != 1: self.log.warning( "Wrong number of science exposures found in {}".format(exp_product["name"]) ) self.log.warning(" Using only first one.") science_member = science_member[0] self.log.info("Working on input %s ...", science_member) with self.open_model(science_member) as science: exp_type = science.meta.exposure.type if isinstance(science, datamodels.CubeModel): multi_int = True else: multi_int = False # Suffixes are dependent on whether the science is multi-integration or not. if multi_int: suffix = "calints" self.extract_1d.suffix = "x1dints" else: suffix = "cal" self.extract_1d.suffix = "x1d" # Check the datamodel to see if it's a grism image, if so get the catalog # name from the asn and record it to the meta if exp_type in WFSS_TYPES: try: science.meta.source_catalog = Path(members_by_type["sourcecat"][0]).name self.log.info(f"Using sourcecat file {science.meta.source_catalog}") science.meta.segmentation_map = Path(members_by_type["segmap"][0]).name self.log.info(f"Using segmentation map {science.meta.segmentation_map}") science.meta.direct_image = Path(members_by_type["direct_image"][0]).name self.log.info(f"Using direct image {science.meta.direct_image}") except IndexError: if science.meta.source_catalog is None: raise IndexError( "No source catalog specified in association or datamodel" ) from None # Decide on what steps can actually be accomplished based on the # provided input. self._step_verification(exp_type, science, members_by_type, multi_int) # Start processing the individual steps. # `assign_wcs` is the critical step. Without it, processing cannot proceed. assign_wcs_exception = None try: calibrated = self.assign_wcs.run(science) except Exception as exception: assign_wcs_exception = exception if ( assign_wcs_exception is not None or calibrated.meta.cal_step.assign_wcs != "COMPLETE" ): messages = ( "Assign_wcs processing was skipped.", "Aborting remaining processing for this exposure.", "No output product will be created.", ) if self.assign_wcs.skip: for message in messages: self.log.warning(message) return else: for message in messages: self.log.error(message) if assign_wcs_exception is not None: raise assign_wcs_exception else: raise RuntimeError("Cannot determine WCS.") # Steps whose order is the same for all types of input: # Self-calibrate to flag bad/warm pixels, and apply flags # to both background and science exposures. # skipped by default for all modes result = self.badpix_selfcal.run( calibrated, members_by_type["selfcal"], members_by_type["background"], ) if isinstance(result, datamodels.JwstDataModel): # if step is skipped, unchanged sci exposure is returned calibrated = result else: # if step actually occurs, then flagged backgrounds are also returned calibrated, bkg_outlier_flagged = result[0], result[1] members_by_type["background"] = bkg_outlier_flagged # apply msa_flagging (flag stuck open shutters for NIRSpec IFU and MOS) calibrated = self.msa_flagging.run(calibrated) # apply the "nsclean" 1/f correction to NIRSpec images calibrated = self.nsclean.run(calibrated) # Apply nsclean to NIRSpec imprint and background members if not self.nsclean.skip: save_results = self.nsclean.save_results for i, imprint_file in enumerate(members_by_type["imprint"]): if save_results: if isinstance(imprint_file, datamodels.JwstDataModel): self.nsclean.output_file = imprint_file.meta.filename else: self.nsclean.output_file = Path(imprint_file).name imprint_nsclean = self.nsclean.run(imprint_file) members_by_type["imprint"][i] = imprint_nsclean for i, bkg_file in enumerate(members_by_type["background"]): if save_results: if isinstance(bkg_file, datamodels.JwstDataModel): self.nsclean.output_file = bkg_file.meta.filename else: self.nsclean.output_file = Path(bkg_file).name bkg_nsclean = self.nsclean.run(bkg_file) members_by_type["background"][i] = bkg_nsclean # Leakcal subtraction (imprint) occurs before background subtraction # on a per-exposure basis. # If there is only one `imprint` member, this imprint exposure is subtracted from all the # science and background exposures. Otherwise, there will be as many `imprint` members as # there are science plus background members. calibrated = self.imprint_subtract.run(calibrated, members_by_type["imprint"]) # for each background image subtract an associated leak cal save_results = self.imprint_subtract.save_results for i, bkg_file in enumerate(members_by_type["background"]): if save_results: if isinstance(bkg_file, datamodels.JwstDataModel): self.imprint_subtract.output_file = bkg_file.meta.filename else: self.imprint_subtract.output_file = Path(bkg_file).name bkg_imprint_sub = self.imprint_subtract.run(bkg_file, members_by_type["imprint"]) members_by_type["background"][i] = bkg_imprint_sub calibrated = self.bkg_subtract.run(calibrated, members_by_type["background"]) # The order of the next few steps is tricky, depending on mode: # WFSS/Grism data need flat_field before extract_2d, but other modes # need extract_2d first. Furthermore, NIRSpec MOS and FS need # srctype and wavecorr before flat_field. if exp_type in GRISM_TYPES: calibrated = self._process_grism(calibrated) elif exp_type == "NRS_MSASPEC": calibrated = self._process_nirspec_msa_slits(calibrated) elif exp_type in NRS_SLIT_TYPES: calibrated = self._process_nirspec_slits(calibrated) elif exp_type == "NIS_SOSS": calibrated = self._process_niriss_soss(calibrated) else: calibrated = self._process_common(calibrated) # Record ASN pool and table names in output calibrated.meta.asn.pool_name = pool_name calibrated.meta.asn.table_name = Path(asn_file).name calibrated.meta.filename = self.make_output_path(basepath=self.output_file, suffix=suffix) # Produce a resampled product, either via resample_spec for # "regular" spectra or cube_build for IFU data. No resampled # product is produced for time-series modes. if exp_type in ["NRS_FIXEDSLIT", "NRS_MSASPEC", "MIR_LRS-FIXEDSLIT"] and not isinstance( calibrated, datamodels.CubeModel ): # Call pixel replace, followed by resample_spec for 2D slit data resampled = calibrated.copy() # interpolate pixels that have a NaN value or are flagged # as DO_NOT_USE or NON_SCIENCE. resampled = self.pixel_replace.run(resampled) resampled = self.resample_spec.run(resampled) elif is_nrs_slit_linelamp(calibrated): # Call pixel_replace followed by resample_spec for NRS 2D line lamp slit data resampled = calibrated.copy() # interpolate pixels that have a NaN value or are flagged # as DO_NOT_USE or NON_SCIENCE. resampled = self.pixel_replace.run(resampled) resampled = self.resample_spec.run(resampled) elif (exp_type in ["MIR_MRS", "NRS_IFU"]) or is_nrs_ifu_linelamp(calibrated): # First call pixel_replace then call cube_build step for IFU data. # For cube_build always create a single cube containing multiple # wavelength bands resampled = calibrated.copy() # interpolate pixels that have a NaN value or are flagged # as DO_NOT_USE or NON_SCIENCE. resampled = self.pixel_replace.run(resampled) resampled = self.cube_build.run(resampled) if query_step_status(resampled, "cube_build") == "COMPLETE": self.save_model(resampled[0], suffix="s3d") elif exp_type in ["MIR_LRS-SLITLESS"]: resampled = calibrated.copy() # interpolate pixels that have a NaN value or are flagged # as DO_NOT_USE or NON_SCIENCE. resampled = self.pixel_replace.run(resampled) else: # will be run if set in parameter ref file or by user resampled = calibrated.copy() # interpolate pixels that have a NaN value or are flagged # as DO_NOT_USE or NON_SCIENCE. resampled = self.pixel_replace.run(resampled) # Extract a 1D spectrum from the 2D/3D data if ( exp_type in ["MIR_MRS", "NRS_IFU"] and query_step_status(resampled, "cube_build") == "SKIPPED" ): # Skip extract_1d for IFU modes where no cube was built self.extract_1d.skip = True # SOSS data need to run photom on x1d products and optionally save the photom # output, while all other exptypes simply run extract_1d. if exp_type == "NIS_SOSS": if multi_int: self.photom.suffix = "x1dints" else: self.photom.suffix = "x1d" self.extract_1d.save_results = False x1d = resampled.copy() x1d = self.extract_1d.run(x1d) # Possible that no fit was possible - if so, skip photom if (x1d is None) or (x1d.meta.cal_step.extract_1d == "SKIPPED"): self.log.warning("Extract_1d did not return a DataModel - skipping photom.") else: self.photom.save_results = self.save_results x1d = self.photom.run(x1d) elif exp_type == "NRS_MSASPEC": # Special handling for MSA spectra, to handle mixed-in # fixed slits separately if not self.extract_1d.skip: x1d = self._extract_nirspec_msa_slits(resampled) else: x1d = resampled.copy() else: x1d = resampled.copy() x1d = self.extract_1d.run(x1d) resampled.close() if x1d is not None: x1d.close() # That's all folks self.log.info("Finished processing product {}".format(exp_product["name"])) return calibrated
def _step_verification(self, exp_type, science, members_by_type, multi_int): """ Verify whether requested steps can operate on the given exposure type. Though ideally this would all be controlled through the pipeline parameters, the desire to keep the number of config files down has pushed the logic into code. Once step and pipeline parameters are retrieved from CRDS, this logic can be removed. Parameters ---------- exp_type : str The exposure type of the data. science : JWSTDataModel The input science data model. members_by_type : dict Dictionary of members in the association, keyed by type. multi_int : bool Flag indicating whether the data is multi-integration. """ # Check for NIRSpec MSA bad shutter flagging. if not self.msa_flagging.skip and exp_type not in [ "NRS_MSASPEC", "NRS_IFU", "NRS_LAMP", "NRS_AUTOFLAT", "NRS_AUTOWAVE", ]: self.log.debug('Science data does not allow MSA flagging. Skipping "msa_flagging".') self.msa_flagging.skip = True # Check for NIRSpec "nsclean" correction. Attempt to apply to # IFU, MOS, FIXEDSLIT, and NRS_BRIGHTOBJ modes, for now. if not self.nsclean.skip and exp_type not in [ "NRS_MSASPEC", "NRS_IFU", "NRS_FIXEDSLIT", "NRS_BRIGHTOBJ", ]: self.log.debug('Science data does not allow NSClean correction. Skipping "nsclean".') self.nsclean.skip = True # Check for image-to-image background subtraction can be done. if not self.bkg_subtract.skip: if exp_type in EXP_TYPES_USING_REFBKGDS or len(members_by_type["background"]) > 0: if exp_type in EXP_TYPES_USING_REFBKGDS: members_by_type["background"] = [] # will be overwritten by the step # Setup for saving self.bkg_subtract.suffix = "bsub" if multi_int: self.bkg_subtract.suffix = "bsubints" # Backwards compatibility if self.save_bsub: self.bkg_subtract.save_results = True else: self.log.debug( "Science data does not allow direct background subtraction. " 'Skipping "bkg_subtract".' ) self.bkg_subtract.skip = True # Check for imprint subtraction. # If we have a background then we could have an imprint image # associated with the background. imprint = members_by_type["imprint"] if not self.imprint_subtract.skip: if len(imprint) > 0 and ( exp_type in ["NRS_MSASPEC", "NRS_IFU"] or is_nrs_ifu_flatlamp(science) ): if len(imprint) > 1 and ( exp_type in ["NRS_MSASPEC"] or is_nrs_ifu_flatlamp(science) ): self.log.warning("Wrong number of imprint members") members_by_type["imprint"] = imprint[0] else: self.log.debug( "Science data does not allow imprint processing. " 'Skipping "imprint_subtraction".' ) self.imprint_subtract.skip = True # Check for straylight correction for MIRI MRS. if not self.straylight.skip and exp_type != "MIR_MRS": self.log.debug( 'Science data does not allow stray light correction. Skipping "straylight".' ) self.straylight.skip = True # Check for residual_fringe correction for MIRI MRS. if not self.residual_fringe.skip and exp_type != "MIR_MRS": self.log.debug( "Science data does not allow residual fringe correction. " 'Skipping "residual fringe".' ) self.residual_fringe.skip = True # Apply the fringe correction for MIRI MRS if not self.fringe.skip and exp_type != "MIR_MRS": self.log.debug('Science data does not allow fringe correction. Skipping "fringe".') self.fringe.skip = True # Apply pathloss correction to MIRI LRS, NIRSpec, and NIRISS SOSS exposures if not self.pathloss.skip and exp_type not in [ "MIR_LRS-FIXEDSLIT", "NRS_FIXEDSLIT", "NRS_MSASPEC", "NRS_IFU", "NIS_SOSS", ]: self.log.debug('Science data does not allow pathloss correction. Skipping "pathloss".') self.pathloss.skip = True # Apply barshadow correction to NIRSPEC MSA exposures if not self.barshadow.skip and exp_type != "NRS_MSASPEC": self.log.debug( 'Science data does not allow barshadow correction. Skipping "barshadow".' ) self.barshadow.skip = True # Apply master background only to NIRSPEC MSA exposures if not self.master_background_mos.skip and exp_type != "NRS_MSASPEC": self.log.debug( "Science data does not allow master background correction. " 'Skipping "master_background_mos".' ) self.master_background_mos.skip = True # Apply WFSS contamination correction only to WFSS exposures if not self.wfss_contam.skip and exp_type not in WFSS_TYPES: self.log.debug( 'Science data does not allow WFSS contamination correction. Skipping "wfss_contam".' ) self.wfss_contam.skip = True def _process_grism(self, data): """ Calibrate WFSS & Grism data. This pipeline differs from other spectroscopic modes because flat_field is applied before extract_2d, and WFSS-specific steps are performed. Parameters ---------- data : JWSTDataModel The input science data model. Returns ------- JWSTDataModel The calibrated data model. """ # Apply flat-field correction calibrated = self.flat_field.run(data) # Create and save a WFSS e-/sec image, if requested if self.save_wfss_esec: self.log.info("Creating WFSS e-/sec product") # Find and load the gain reference file that we need gain_filename = self.get_reference_file(calibrated, "gain") self.log.info("Using GAIN reference file %s", gain_filename) with datamodels.GainModel(gain_filename) as gain_model: # Always use the full-frame version of the gain ref file, # even the science data are taken with a subarray gain_image = gain_model.data # Compute the simple mean of the gain image, excluding reference pixels. # The gain ref file doesn't have a DQ array that can be used to # mask bad values, so manually exclude NaN's and gain <= 0. gain_image[gain_image <= 0.0] = np.nan mean_gain = np.nanmean(gain_image[4:-4, 4:-4]) self.log.info("mean gain = %s", mean_gain) # Apply gain to the intermediate WFSS image wfss_esec = calibrated.copy() mean_gain_sqr = mean_gain**2 wfss_esec.data *= mean_gain wfss_esec.var_poisson *= mean_gain_sqr wfss_esec.var_rnoise *= mean_gain_sqr wfss_esec.var_flat *= mean_gain_sqr wfss_esec.err = np.sqrt( wfss_esec.var_poisson + wfss_esec.var_rnoise + wfss_esec.var_flat ) # Save the WFSS e-/sec image self.save_model(wfss_esec, suffix="esec", force=True) del wfss_esec # Continue with remaining calibration steps, using the original # DN/sec image calibrated = self.extract_2d.run(calibrated) calibrated = self.srctype.run(calibrated) calibrated = self.straylight.run(calibrated) calibrated = self.fringe.run(calibrated) calibrated = self.pathloss.run(calibrated) calibrated = self.barshadow.run(calibrated) calibrated = self.wfss_contam.run(calibrated) calibrated = self.photom.run(calibrated) return calibrated def _process_nirspec_slits(self, data): """ Calibrate NIRSpec slits. This function handles FS, BOTS, and calibration modes. MOS mode is handled separately, in order to do master background subtraction and process fixed slits defined in MSA files. Note that NIRSpec MOS and FS need srctype and wavecorr before flat_field. Parameters ---------- data : JWSTDataModel The input science data model. Returns ------- JWSTDataModel The calibrated data model. """ calibrated = self.extract_2d.run(data) calibrated = self.srctype.run(calibrated) calibrated = self.master_background_mos.run(calibrated) calibrated = self.wavecorr.run(calibrated) calibrated = self.flat_field.run(calibrated) calibrated = self.pathloss.run(calibrated) calibrated = self.barshadow.run(calibrated) calibrated = self.photom.run(calibrated) return calibrated def _process_nirspec_msa_slits(self, data): """ Calibrate NIRSpec MSA slits. The NRS_MSASPEC exposure type may contain fixed slit definitions in addition to standard MSA slitlets. These are handled separately internally to this function, in order to pull the correct reference files and perform the right algorithms for each slit type. Processed slits are recombined into a single model with EXP_TYPE=NRS_MSASPEC on return. Note that NIRSpec MOS and FS need srctype and wavecorr before flat_field. Also have to deal with master background operations. Parameters ---------- data : JWSTDataModel The input science data model. Returns ------- JWSTDataModel The calibrated data model """ calibrated = self.extract_2d.run(data) calibrated = self.srctype.run(calibrated) # Split the datamodel into 2 pieces: one with MOS slits and # the other with FS slits calib_mos = datamodels.MultiSlitModel() calib_fss = datamodels.MultiSlitModel() for slit in calibrated.slits: if slit.quadrant == 5: slit.meta.exposure.type = "NRS_FIXEDSLIT" calib_fss.slits.append(slit) else: calib_mos.slits.append(slit) # First process MOS slits through all remaining steps calib_mos.update(calibrated) calib_mos.meta.wcsinfo = calibrated.meta.wcsinfo.instance if len(calib_mos.slits) > 0: calib_mos = self.master_background_mos.run(calib_mos) calib_mos = self.wavecorr.run(calib_mos) calib_mos = self.flat_field.run(calib_mos) calib_mos = self.pathloss.run(calib_mos) calib_mos = self.barshadow.run(calib_mos) calib_mos = self.photom.run(calib_mos) # Now repeat for FS slits if len(calib_fss.slits) > 0: calib_fss.update(calibrated) calib_fss.meta.exposure.type = "NRS_FIXEDSLIT" # Run each step with an alternate suffix, # to avoid overwriting previous products if save_results=True fs_steps = ["wavecorr", "flat_field", "pathloss", "photom"] for step_name in fs_steps: # Set suffix step = getattr(self, step_name) current_suffix = step.suffix step.suffix = f"{current_suffix}_fs" # Set an additional intermediate suffix for the flat field step current_flat_suffix = None if step_name == "flat_field": current_flat_suffix = step.flat_suffix step.flat_suffix = f"{current_flat_suffix}_fs" # Run step calib_fss = step.run(calib_fss) # Reset suffix step.suffix = current_suffix if step_name == "flat_field": step.flat_suffix = current_flat_suffix # Append the FS results to the MOS results for slit in calib_fss.slits: calib_mos.slits.append(slit) if len(calib_mos.slits) == len(calib_fss.slits): # update the MOS model with step completion status from the # FS model, since there were no MOS slits to run for step in fs_steps: setattr(calib_mos.meta.cal_step, step, getattr(calib_fss.meta.cal_step, step)) return calib_mos def _process_niriss_soss(self, data): """ Calibrate SOSS data. New SOSS extraction requires input to extract_1d step in units of DN/s, with photom step to be run afterwards. Parameters ---------- data : JWSTDataModel The input science data model. Returns ------- JWSTDataModel The calibrated data model """ calibrated = self.srctype.run(data) calibrated = self.flat_field.run(calibrated) calibrated = self.straylight.run(calibrated) calibrated = self.fringe.run(calibrated) calibrated = self.pathloss.run(calibrated) calibrated = self.barshadow.run(calibrated) return calibrated def _process_common(self, data): """ Calibrate data using default spectral processing. Parameters ---------- data : JWSTDataModel The input science data model. Returns ------- JWSTDataModel The calibrated data model """ calibrated = self.srctype.run(data) calibrated = self.straylight.run(calibrated) calibrated = self.flat_field.run(calibrated) calibrated = self.fringe.run(calibrated) calibrated = self.pathloss.run(calibrated) calibrated = self.barshadow.run(calibrated) calibrated = self.photom.run(calibrated) calibrated = self.residual_fringe.run(calibrated) # only run on MIRI_MRS data return calibrated def _extract_nirspec_msa_slits(self, resampled): """ Extract NIRSpec MSA slits with separate handling for FS slits. Parameters ---------- resampled : JWSTDataModel The resampled data model from which to update the metadata of the output Returns ------- MultiSpecModel The extracted 1D spectra """ # Check for fixed slits mixed in with MSA spectra: # they need separate reference files resamp_mos = datamodels.MultiSlitModel() resamp_fss = datamodels.MultiSlitModel() for slit in resampled.slits: # Quadrant information is not preserved through resampling, # but MSA slits have numbers for names, so use that to # distinguish MSA from FS try: msa_name = int(slit.name) except ValueError: msa_name = None if msa_name is None: slit.meta.exposure.type = "NRS_FIXEDSLIT" resamp_fss.slits.append(slit) else: slit.meta.exposure.type = "NRS_MSASPEC" resamp_mos.slits.append(slit) resamp_mos.update(resampled) resamp_fss.update(resampled) # Extract the MOS slits x1d = None save_x1d = self.extract_1d.save_results self.extract_1d.save_results = False if len(resamp_mos.slits) > 0: self.log.info(f"Extracting {len(resamp_mos.slits)} MSA slitlets") x1d = self.extract_1d.run(resamp_mos) # Extract the FS slits if len(resamp_fss.slits) > 0: self.log.info(f"Extracting {len(resamp_fss.slits)} fixed slits") resamp_fss.meta.exposure.type = "NRS_FIXEDSLIT" x1d_fss = self.extract_1d.run(resamp_fss) if x1d is None: x1d = x1d_fss x1d.meta.exposure.type = "NRS_MSASPEC" else: for spec in x1d_fss.spec: x1d.spec.append(spec) # save the composite model if save_x1d: self.save_model(x1d, suffix="x1d") resamp_mos.close() resamp_fss.close() return x1d