===== Steps ===== .. _configuring-a-step: Configuring a Step ================== This section describes how to instantiate a Step and set configuration parameters on it. Steps can be configured by either: - Writing a parameter file - Instantiating the Step directly from Python .. _running_a_step_from_a_configuration_file: Running a Step from a parameter file ==================================== A parameter file contains one or more of a ``Step``'s parameters. Any parameter not specified in the file will take its value from the CRDS-retrieved parameter reference file or the defaults coded directly into the ``Step``. Note that any parameter specified on the command line overrides all other values. The preferred format of parameter files is the :ref:`config_asdf_files` format. Refer to the :ref:`minimal example` for a complete description of the contents. The rest of this document will focus on the step parameters themselves. Every parameter file must contain the key ``class``, followed by the optional ``name`` followed by any parameters that are specific to the step being run. ``class`` specifies the Python class to run. It should be a fully-qualified Python path to the class. Step classes can ship with ``stpipe`` itself, they may be part of other Python packages, or they exist in freestanding modules alongside the configuration file. For example, to use the ``SystemCall`` step included with ``stpipe``, set ``class`` to ``stpipe.subprocess.SystemCall``. To use a class called ``Custom`` defined in a file ``mysteps.py`` in the same directory as the configuration file, set ``class`` to ``mysteps.Custom``. ``name`` defines the name of the step. This is distinct from the class of the step, since the same class of Step may be configured in different ways, and it is useful to be able to have a way of distinguishing between them. For example, when Steps are combined into :ref:`stpipe-user-pipelines`, a Pipeline may use the same Step class multiple times, each with different configuration parameters. The parameters specific to the Step all reside under the key ``parameters``. The set of accepted parameters is defined in the Step’s spec member. The easiest way to get started on a parameter file is to call ``Step.export_config`` and then edit the file that is created. This will generate an ASDF config file that includes every available parameter, which can then be trimmed to the parameters that require customization. Here is an example parameter file (``do_cleanup.asdf``) that runs the (imaginary) step ``stpipe.cleanup`` to clean up an image. .. code-block:: #ASDF 1.0.0 #ASDF_STANDARD 1.3.0 %YAML 1.1 %TAG ! tag:stsci.edu:asdf/ --- !core/asdf-1.1.0 class: stpipe.cleanup name: MyCleanup parameters: threshold: 42.0 scale: 0.01 ... .. _strun: Running a Step from the commandline ----------------------------------- The ``strun`` command can be used to run Steps from the commandline. The first argument may be either: - The path to a parameter file - A Python class Additional parameters may be passed on the commandline. These parameters override any that are present in the parameter file. Any extra positional parameters on the commandline are passed to the step's process method. This will often be input filenames. For example, to use an existing parameter file from above, but override it so the threshold parameter is different:: $ strun do_cleanup.asdf input.fits --threshold=86 To display a list of the parameters that are accepted for a given Step class, pass the ``-h`` parameter, and the name of a Step class or parameter file:: $ strun -h do_cleanup.asdf usage: strun [--logcfg LOGCFG] cfg_file_or_class [-h] [--pre_hooks] [--post_hooks] [--skip] [--scale] [--extname] optional arguments: -h, --help show this help message and exit --logcfg LOGCFG The logging configuration file to load --verbose, -v Turn on all logging messages --debug When an exception occurs, invoke the Python debugger, pdb --pre_hooks --post_hooks --skip Skip this step --scale A scale factor --threshold The threshold below which to apply cleanup --output_file File to save the output to Every step has an `--output_file` parameter. If one is not provided, the output filename is determined based on the input file by appending the name of the step. For example, in this case, `foo.fits` is output to `foo_cleanup.fits`. Finally, the parameters a ``Step`` actually ran with can be saved to a new parameter file using the `--save-parameters` option. This file will have all the parameters, specific to the step, and the final values used. .. _`Parameter Precedence`: Parameter Precedence ```````````````````` There are a number of places where the value of a parameter can be specified. The order of precedence, from most to least significant, for parameter value assignment is as follows: 1. Value specified on the command-line: ``strun step.asdf --par=value_that_will_be_used`` 2. Value found in the user-specified parameter file 3. CRDS-retrieved parameter reference 4. ``Step``-coded default, determined by the parameter definition ``Step.spec`` For pipelines, if a pipeline parameter file specifies a value for a step in the pipeline, that takes precedence over any step-specific value found, either from a step-specific parameter file or CRDS-retrieved step-specific parameter file. The full order of precedence for a pipeline and its sub steps is as follows: 1. Value specified on the command-line: ``strun pipeline.asdf --steps.step.par=value_that_will_be_used`` 2. Value found in the user-specified pipeline parameter file: ``strun pipeline.asdf`` 3. Value found in the parameter file specified in a pipeline parameter file 4. CRDS-retrieved parameter reference for the pipeline 5. CRDS-retrieved parameter reference for each sub-step 6. ``Pipeline``-coded default for itself and all sub-steps 7. ``Step``-coded default for each sub-step Debugging ````````` To output all logging output from the step, add the `--verbose` option to the commandline. (If more fine-grained control over logging is required, see :ref:`user-logging`). To start the Python debugger if the step itself raises an exception, pass the `--debug` option to the commandline. CRDS Retrieval of Step Parameters ````````````````````````````````` In general, CRDS uses the input to a ``Step`` to determine which reference files to use. Nearly all JWST-related steps take only a single input file. However, often times that input file is an association. Since step parameters are configured only once per execution of a step or pipeline, only the first qualifying member, usually of type ``science`` is used. Retrieval of ``Step`` parameters from CRDS can be completely disabled by using the ``--disable-crds-steppars`` command-line switch, or setting the environment variable ``STPIPE_DISABLE_CRDS_STEPPARS`` to ``true``. .. _run_step_from_python: Running a Step in Python ------------------------ There are a number of methods to run a step within a Python interpreter, depending on how much control one needs. Step.from_cmdline() ``````````````````` For individuals who are used to using the ``strun`` command, `Step.from_cmdline` is the most direct method of executing a step or pipeline. The only argument is a list of strings, representing the command line arguments one would have used for ``strun``. The call signature is:: Step.from_cmdline([string,...]) For example, given the following command-line:: $ strun calwebb_detector1 jw00017001001_01101_00001_nrca1_uncal.fits --steps.linearity.override_linearity='my_lin.fits' the equivalent `from_cmdline` call would be:: from jwst.pipeline import Detector1Pipeline Detector1Pipeline.from_cmdline(['jw00017001001_01101_00001_nrca1_uncal.fits', 'steps.linearity.override_linearity', 'my_lin.fits']) call() `````` Class method `Step.call` is the slightly more programmatic, and preferred, method of executing a step or pipeline. When using ``call``, one gets the full configuration initialization, including CRDS parameter reference retrieval, that one gets with the ``strun`` command or ``Step.from_cmdline`` method. The call signature is:: Step.call(input, config_file=None, **parameters) The positional argument ``input`` is the data to be operated on, usually a string representing a file path or a :ref:`DataModel` The optional keyword argument ``config_file`` is used to specify a local parameter file. The optional keyword argument ``logcfg`` is used to specify a logging configuration file. Finally, the remaining optional keyword arguments are the parameters that the particular step accepts. The method returns the result of the step. A basic example is:: from jwst.jump import JumpStep output = JumpStep.call('jw00017001001_01101_00001_nrca1_uncal.fits') makes a new instance of `JumpStep` and executes using the specified exposure file. `JumpStep` has a parameter ``rejection_threshold``. To use a different value than the default, the statement would be:: output = JumpStep.call('jw00017001001_01101_00001_nrca1_uncal.fits', rejection_threshold=42.0) If one wishes to use a :ref:`parameter file`, specify the path to it using the ``config_file`` argument:: output = JumpStep.call('jw00017001001_01101_00001_nrca1_uncal.fits', config_file='my_jumpstep_config.asdf') run() ````` The instance method `Step.run()` is the lowest-level method to executing a step or pipeline. Initialization and parameter settings are left up to the user. An example is:: from jwst.flatfield import FlatFieldStep mystep = FlatFieldStep() mystep.override_sflat = 'sflat.fits' output = mystep.run(input) `input` in this case can be a fits file containing the appropriate data, or the output of a previously run step/pipeline, which is an instance of a particular :ref:`datamodel`. Unlike the ``call`` class method, there is no parameter initialization that occurs, either by a local parameter file or from a CRDS-retrieved parameter reference file. Parameters can be set individually on the instance, as is shown above. Parameters can also be specified as keyword arguments when instantiating the step. The previous example could be re-written as:: from jwst.flatfield import FlatFieldStep mystep = FlatFieldStep(override_sflat='sflat.fits') output = mystep.run(input) One can implement parameter reference file retrieval and use of a local parameter file as follows:: from stpipe import config_parser from jwst.flatfield import FlatFieldStep config = FlatFieldStep.get_config_from_reference(input) local_config = config_parser.load_config_file('my_flatfield_config.asdf') config_parser.merge_config(config, local_config) flat_field_step = FlatFieldStep.from_config_section(config) output = flat_field_step.run(input) Using the ``.run()`` method is the same as calling the instance directly. They are equivalent:: output = mystep(input)