OutlierDetectionStep
- class jwst.outlier_detection.OutlierDetectionStep(name=None, parent=None, config_file=None, _validate_kwds=True, **kws)[source]
Bases:
JwstStep
Flag outlier bad pixels and cosmic rays in DQ array of each input image.
Input images can be listed in an input association file or dictionary, or already opened with a ModelContainer or ModelLibrary. DQ arrays are modified in place. SCI, ERR, VAR_RNOISE, VAR_FLAT, and VAR_POISSON arrays are updated with NaN values matching the DQ flags.
Create a
Step
instance.- Parameters:
- namestr
The name of the Step instance. Used in logging messages and in cache filenames. If not provided, one will be generated based on the class name.
- parent
Step
The parent step of this step. Used to determine a fully-qualified name for this step, and to determine the mode in which to run this step.
- config_filestr or pathlib.Path
The path to the config file that this step was initialized with. Use to determine relative path names of other config files.
- _validate_kwdsbool
Validate given
kws
against specs/config.- **kwsdict
Additional parameters to set. These will be set as member variables on the new Step instance.
Attributes Summary
Methods Summary
process
(input_data)Perform outlier detection processing on input data.
Attributes Documentation
- class_alias = 'outlier_detection'
- spec
weight_type = option('ivm','exptime',default='ivm') pixfrac = float(min=0.0, max=1.0, default=1.0) # Pixel shrinkage factor kernel = option('square','point','turbo',default='square') # Flux distribution kernel fillval = string(default='NAN') maskpt = float(default=0.7) snr = string(default='5.0 4.0') scale = string(default='1.2 0.7') backg = float(default=0.0) kernel_size = string(default='7 7') threshold_percent = float(default=99.8) rolling_window_width = integer(default=25) ifu_second_check = boolean(default=False) save_intermediate_results = boolean(default=False) resample_data = boolean(default=True) good_bits = string(default="~DO_NOT_USE") # DQ flags to allow search_output_file = boolean(default=False) in_memory = boolean(default=True) # in_memory flag ignored if run within the pipeline; set at pipeline level instead
Methods Documentation
- process(input_data)[source]
Perform outlier detection processing on input data.
- Parameters:
- input_dataasn file,
ModelContainer
, orModelLibrary
The input association. For imaging modes a ModelLibrary is expected, whereas for spectroscopic modes a ModelContainer is expected.
- input_dataasn file,
- Returns:
- result_models
ModelContainer
orModelLibrary
The modified input data with DQ flags set for detected outliers.
- result_models