RefPixStep
- class jwst.refpix.RefPixStep(name=None, parent=None, config_file=None, _validate_kwds=True, **kws)[source]
Bases:
JwstStep
Use reference pixels to correct bias drifts.
Create a
Step
instance.- Parameters:
- namestr
The name of the Step instance. Used in logging messages and in cache filenames. If not provided, one will be generated based on the class name.
- parent
Step
The parent step of this step. Used to determine a fully-qualified name for this step, and to determine the mode in which to run this step.
- config_filestr or pathlib.Path
The path to the config file that this step was initialized with. Use to determine relative path names of other config files.
- _validate_kwdsbool
Validate given
kws
against specs/config.- **kwsdict
Additional parameters to set. These will be set as member variables on the new Step instance.
Attributes Summary
Methods Summary
process
(step_input)Execute the reference pixel correction step.
Attributes Documentation
- class_alias = 'refpix'
- reference_file_types: ClassVar = ['refpix', 'sirskernel']
- spec
odd_even_columns = boolean(default=True) # Compute reference signal separately for even/odd columns use_side_ref_pixels = boolean(default=True) # Use side reference pixels for reference signal for each row side_smoothing_length = integer(default=11) # Median window smoothing height for side reference signal side_gain = float(default=1.0) # Multiplicative factor for side reference signal before subtracting from rows odd_even_rows = boolean(default=True) # Compute reference signal separately for even- and odd-numbered rows ovr_corr_mitigation_ftr = float(default=3.0) # Factor to avoid overcorrection of bad reference pixels for IRS2 preserve_irs2_refpix = boolean(default=False) # Preserve reference pixels in output irs2_mean_subtraction = boolean(default=False) # Apply a mean offset subtraction before IRS2 correction refpix_algorithm = option("median", "sirs", default="median") # NIR full-frame side pixel algorithm sigreject = float(default=4.0) # Number of sigmas to reject as outliers gaussmooth = float(default=1.0) # Width of Gaussian smoothing kernel to use as a low-pass filter halfwidth = integer(default=30) # Half-width of convolution kernel to build
Methods Documentation